Oryza sativa
not annotated - annotated - LINNAEUS only
20840506
OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles.
* The cadmium (Cd) over-accumulating rice (Oryza sativa) cv Cho-Ko-Koku was previously shown to have an enhanced rate of root-to-shoot Cd translocation. This trait is controlled by a single recessive allele located at qCdT7. * In this study, using positional cloning and transgenic strategies, heavy metal ATPase 3 (OsHMA3) was identified as the gene that controls root-to-shoot Cd translocation rates. The subcellular localization and Cd-transporting activity of the gene products were also investigated. * The allele of OsHMA3 that confers high root-to-shoot Cd translocation rates (OsHMA3mc) encodes a defective P(1B) -ATPase transporter. OsHMA3 fused to green fluorescent protein was localized to vacuolar membranes in plants and yeast. An OsHMA3 transgene complemented Cd sensitivity in a yeast mutant that lacks the ability to transport Cd into vacuoles. By contrast, OsHMA3mc did not complement the Cd sensitivity of this yeast mutant, indicating that the OsHMA3mc transport function was lost. * We propose that the root cell cytoplasm of Cd-overaccumulating rice plants has more Cd available for loading into the xylem as a result of the lack of OsHMA3-mediated transportation of Cd to the vacuoles. This defect results in Cd translocation to the shoots in higher concentrations. These data demonstrate the importance of vacuolar sequestration for Cd accumulation in rice.
20840510
Spatial distribution of arsenic and temporal variation of its concentration in rice.
* In order to gain insights into the transport and distribution of arsenic (As) in intact rice (Oryza sativa) plants and its unloading into the rice grain, we investigated the spatial distribution of As and the temporal variation of As concentration in whole rice plants at different growth stages. To the best of our knowledge, this is the first time that such a study has been performed. * Inductively coupled plasma mass spectroscopy (ICP-MS) and high-performance liquid chromatography (HPLC)-ICP-MS were used to analyze total As concentration and speciation. Moreover, synchrotron-based X-ray fluorescence (SXRF) was used to investigate in situ As distribution in the leaf, internode, node and grain. * Total As concentrations of vegetative tissues increased during the 2 wk after flowering. The concentration of dimethylarsinic acid (DMA) in the caryopsis decreased progressively with its development, whereas inorganic As concentration remained stable. The ratios of As content between neighboring leaves or between neighboring internodes were c. 0.6. SXRF revealed As accumulation in the center of the caryopsis during its early development and then in the ovular vascular trace. * These results indicate that there are different controls on the unloading of inorganic As and DMA; the latter accumulated mainly in the caryopsis before flowering, whereas inorganic As was mainly transported into the caryopsis during grain filling. Moreover, nodes appeared to serve as a check-point in As distribution in rice shoots.
21039565
Aerenchyma formation in the rice stem and its promotion by H2O2.
* Gas spaces (aerenchyma) form as an adaptation to submergence to facilitate gas exchange. In rice (Oryza sativa), aerenchyma develop by cell death and lysis, which are poorly understood at the cellular level. * Aerenchyma formation was studied in rice stems by light microscopy. It was analyzed in response to submergence, ethylene and hydrogen peroxide (H(2)O(2)) treatment, and in the MT2b::Tos17 mutant. O(2)*(-) was detected with nitroblue tetrazolium and an epinephrine assay. H(2)O(2) was detected with 3,3'-diaminobenzidine. * Aerenchyma develop constitutively in all internodes of the deep-water rice variety Pin Gaew 56, but are absent from the nodes. Constitutive aerenchyma formation was also observed in two lowland rice varieties, albeit to a lesser degree. A larger number of aerenchyma are present in older internodes, and at the top of each internode, revealing developmental gradients. Submergence or treatment with the ethylene-releasing compound ethephon promoted aerenchyma formation in all genotypes analyzed. Pre-aerenchymal cells contain less starch, no chloroplasts, thinner cell walls and produce elevated levels of O(2)*(-) and H(2)O(2) compared with other parenchymal cells. Ethephon promotes O(2)*(-) formation and H(2)O(2) promotes aerenchyma formation in a dose-dependent manner. Further-more, genetic downregulation of the H(2)O(2) scavenger MT2b enhances aerenchyma formation. * Aerenchyma formation is mediated by reactive oxygen species.
21039568
Identification of a novel mitochondrial protein, short postembryonic roots 1 (SPR1), involved in root development and iron homeostasis in Oryza sativa.
* A rice mutant, Oryza sativa short postembryonic roots 1 (Osspr1), has been characterized. It has short postembryonic roots, including adventitious and lateral roots, and a lower iron content in its leaves. * OsSPR1 was identified by map-based cloning. It encodes a novel mitochondrial protein with the Armadillo-like repeat domain. * Osspr1 mutants exhibited decreased root cell elongation. The iron content of the mutant shoots was significantly altered compared with that of wild-type shoots. A similar pattern of alteration of manganese and zinc concentrations in shoots was also observed. Complementation of the mutant confirmed that OsSPR1 is involved in post-embryonic root elongation and iron homeostasis in rice. OsSPR1 was found to be ubiquitously expressed in various tissues throughout the plant. The transcript abundance of various genes involved in iron uptake and signaling via both strategies I and II was similar in roots of wild-type and mutant plants, but was higher in the leaves of mutant plants. * Thus, a novel mitochondrial protein that is involved in root elongation and plays a role in metal ion homeostasis has been identified.
20946420
Association between nonsynonymous mutations of starch synthase IIa and starch quality in rice (Oryza sativa).
Starch quality is one of the most important agronomic traits in Asian rice, Oryza sativa. Starch synthase IIa (SsIIa) is a major candidate gene for starch quality variation. Within SsIIa, three nonsynonymous mutations in exon 8 have been shown to affect enzyme activity when expressed in Escherichia coli. To search for the variation in SsIIa that is responsible for starch quality variation in rice, we sequenced the SsIIa exon 8 region and measured starch quality as starch disintegration in alkali for 289 accessions of cultivated rice and 57 accessions of its wild ancestor, Oryza rufipogon. A general linear model and nested clade analysis were used to identify the associations between the three nonsynonymous single nucleotide polymorphisms (SNPs) and starch quality. Among the three nonsynonymous SNPs, we found strong evidence of association at one nucleotide site ('SNP 3'), corresponding to a Leu/Phe replacement at codon 781. A second SNP, corresponding to a Val/Met replacement at codon 737, could potentially show an association with increased sample sizes. Variation in SsIIa enzyme activity is associated with the cohesiveness of rice grains when cooked, and our findings are consistent with selection for more cohesive grains during the domestication of tropical japonica rice.
21241815
Genetic and molecular characterization of a blue light photoreceptor MGWC-1 in Magnaporth oryzae.
Three key factors involved in successful plant disease development include the presence of a susceptible host, a virulent pathogen, and a disease-conducive environment. Our understanding of how environmental factors influence disease-conducive or disease-suppressive conditions, and how a pathogen advantageously capitalizes on them, is quite limited. Utilizing the model pathosystem Magnaporthe oryzae-Oryza sativa, we found a significant light-dependent disease suppression. Our genetic data suggest that the blue-light receptor MGWC-1 in M. oryzae is involved in light-dependent disease suppression during the dark-phase (disease-conducive light condition) immediately after pathogen-host contact. Sensing "darkness" is accomplished by MGWC-1, a blue-light receptor in M. oryzae. To explore the potential molecular mechanisms of light-dependent disease suppression we performed a genome-wide microarray experiment and identified several groups of gene families that are differentially regulated during the light-to-dark transition. Our genetic and molecular data provide insights into how a fungal pathogen utilizes ambient light signals for successful disease development.